
Ray Tracing with
Spatial Hierarchies

Jeff Mahovsky & Brian Wyvill
CSC 305

Ray Tracing

Flexible, accurate, high-quality rendering
Slow
Simplest ray tracer:

Test every ray against every object in the scene
N objects, M rays → O(N * M)

Using an acceleration scheme:
Acceleration scheme = sub-linear complexity of N
Grids and hierarchies
N objects, M rays → O(log(N) * M)
Log(N) is a theoretical estimate, in reality it depends on the
scene
Speedups of over 100x for complex scenes are possible

Uniform Grid

Ray steps through the grid and is tested against objects in the grid
cells along the path of the ray
Can avoid testing the vast majority of the objects for each ray
Grid traversal overhead can negate savings…

Uniform Grid: problems

Grid does not adapt to empty space and local complexity
Works best for uniformly distributed objects (seldom happens in reality)
Typical scenes have areas of complex geometry with empty space
between them

Empty space:
Time is wasted tracing the ray through empty grid cells

Local complexity:
Too many objects in each grid cell
Could increase grid resolution, but that makes the empty space problem
worse

Difficult to choose optimal grid resolution that minimizes rendering
time: tradeoff between these two problems
Despite this, a grid is still much better than nothing

Hierarchies

Need a scheme that adapts to the distribution of objects in the scene
Build a hierarchy or spatial tree
The scene is recursively subdivided into nodes that enclose space
and objects

Empty space is not subdivided
Complex areas are subdivided
Subdivide until criteria is met: e.g.

Number of objects in the node is below a certain threshold (4-8 works well)
Tree depth reaches a specified maximum

Solves both empty space and local complexity problems
Represented as a tree data structure in memory
Examples…

Hierarchy of Grids

Grid cells/nodes may be empty, contain objects, or contain another
grid (e.g. if a cell contains more than 1 object)
An object may span multiple nodes or grid cells

Hierarchy of Grids 2

Start with a normal grid just large enough to enclose all the objects
Cells contain pointers to the objects
Cells with more than a certain number of objects (2 in the example)
are subdivided into another grid

Scene Data structure

Hierarchy of Grids 3

Octree

3D space is recursively subdivided into 8 (oct) equal boxes/cubes (child
nodes)
Example is a 2D quadtree that subdivides if node has >1 object
A node’s child nodes may not overlap in space
An object may span multiple nodes
Technically a special case of a Hierarchy of Grids where the sub-grids are
2x2x2 cells

Octree 2

Start with all the objects in the root node
The root node’s size is the minimum bounding cube that encloses all
of the objects

Octree 3

Since the root node contains more than 1 object, it is
subdivided

Octree 4

One child has more than 1 object, so it is subdivided
Still need to keep going…

Binary Space Partitioning (BSP) Tree

Similar to an octree, but divides nodes into two children instead of eight
Alternates splitting along the x, y, and z axes
Example is a 2D BSP that subdivides if a node has > 1 object
Preferred over octrees because tracing a ray through a BSP tree is simpler

Binary Space Partitioning (BSP) Tree 2

Start with all the objects in the root node
Root node’s size is the minimum bounding cube or box that encloses all the
objects
Root node contains more than 1 object so it is subdivided in the x-axis

Binary Space Partitioning (BSP) Tree 3

One child contains more than 1 object so it is subdivided in the y-
axis

Binary Space Partitioning (BSP) Tree 4

One child contains more than 1 object so it is subdivided in the x-
axis

Binary Space Partitioning (BSP) Tree 5

That didn’t help at all! (need to keep going or try a different splitting plane)
In some situations you can keep subdividing infinitely and never have fewer
than 2 objects (also happens with octrees and grid hierarchies)

The higher the maximum number of objects per node, the less chance of
runaway subdivision (I use a maximum of 8, which seems to work well.)
Stop runaway subdivision by having a maximum tree depth or other heuristic that
detects it

Bounding Volume Hierarchy (BVH)

Subdivides the set of objects instead of subdividing 3D space (opposite of the others)
Compare the objects’ center points to the splitting plane

Those on + side belong to one child, those on the – side belong to the other
The two children are then each ‘shrink wrapped’ with a minimum bounding volume

Alternates splitting nodes in half along the x, y, and z axes (like the BSP tree)
A node’s children MAY overlap each other and the splitting plane that created them
Objects MAY NOT span multiple nodes

Bounding Volume Hierarchy (BVH) 2

Start with all the objects in the root node
The root node’s size is the minimum bounding volume that encloses
all of the objects

Bounding Volume Hierarchy (BVH) 3

Split the root node’s bounding volume in half and compare the object center
points to the splitting plane, giving two sets of objects
Two children are created (-child and +child), one for each set of objects
The dimensions of the child nodes are the minimum bounding boxes that
enclose each child’s objects

Splitting plane

-child

+child

Bounding Volume Hierarchy (BVH) 4

The node with two objects is split in half and the process repeats
Note that the –child’s bounding box overlaps the splitting plane: this is OK
The children may overlap too, this is also OK

Splitting plane

+child

-child

+child

-child

Which is better?
Performance partially depends on the scene properties and distribution of
objects
Most widely used (recently) are the BSP tree and the BVH

Simplest to implement
Good Performance

Hierarchy of Grids is not well-used
Fairly complicated to implement
Similar performance to the simpler methods

Octrees were extensively used in the past, but not so much today
Somewhat complicated to implement
Similar performance to the simpler methods

BVHs tend to need fewer nodes to get the same performance

(In my experience) BSP trees have the advantage in ray tracing speed for
complex scenes, but BVHs take less time/computation to construct

BVH construction is simpler and faster because an object can only belong to one
hierarchy node

Tracing Rays through a Hierarchy

Tracing a ray through a hierarchy is a depth-first tree search
Start at the root node of the hierarchy, and test the ray against the
children

Fundamentally, this is a ray-box overlap test
The box is the region of space enclosed by the child
A full ray-box test is only necessary for the BVH

Other schemes have optimized traversal algorithms that can take shortcuts
Only the BVH requires complete box coordinates to be stored with each
node

Others can get away without storing any coordinates because the traversal
algorithms don’t need them or can figure them out

If the ray overlaps a child, test its children, and so forth
Only leaf nodes contain objects
When a leaf node is encountered, test the objects within the node
for intersection with the ray

Tracing Rays through a Hierarchy 2

With Hierarchy of Grids, Octrees and BSP trees, the ray always
traverses the child nodes in the order of their distance along the ray

This order is easy to determine because the children don’t overlap
For each node, determine the closest child and traverse it first
If an object is hit within a node, the traversal is finished because the rest
of the nodes that would have been tested are further away than the
intersection point
The intersection point MUST be within the node, or it is ignored
(remember that an object may overlap multiple nodes, and the
intersection point may lie OUTSIDE the current node and inside a
different one!)
This often results in the same object being tested against the ray
multiple times
This problem also happens with uniform grids

Tracing Rays through a Hierarchy 3

BSP tree example: Traversal order is 1, 3 (and test red square), 2, 4, 7 (and
test triangle and circle), 5 (and test triangle)
Node 6 is not hit by the ray and is ignored
Remember that this is a depth-first tree search, and always traverse the
closest child first

Ray

1
2

3

5

4
6

7
(right)

(left)

(bottom)

(top)

(left)

(right)

Tracing Rays through a Hierarchy 4

In an BVH, the children often overlap (sometimes in strange ways)
Always need to test both children, even if a ray-object intersection
happens in one (because they can overlap each other)
Still try to test them in order of distance along the ray

Compute actual distances to the children’s bounding boxes (can be
expensive)
Use a heuristic that’s simple but correct most of the time

Don’t need to check if a ray-object intersection point is within the current
node, because it is guaranteed to be (objects do not overlap nodes)
Duplicate ray-object tests are avoided because objects do not span
multiple nodes
Need to trim the length of the ray as objects are hit, or unnecessary
traversal will occur

Tracing Groups of Rays through a Hierarchy

Can nearly double performance by tracing groups of rays (e.g. 64 at a time)
instead of individual rays
Same hierarchy traversal rules apply, except a list of rays is used instead of
a single ray
In modern computers, loads from memory can limit performance, especially
if data is not in cache
Group of rays = small, frequently accessed

Resides in CPU cache memory
Hierarchy = large, many nodes infrequently accessed

Mostly in slower main memory
Nodes and objects within are loaded ONCE for each group of rays, instead
of once for each individual ray

Can reduce main memory fetches by up to a factor of 64, if using groups of 64
rays

Tracing Groups of Rays through a Hierarchy 2

Implement group/list of rays as a stack of pointers to rays
Rays are tested against a child node’s bounding box, and those rays that
overlap the child node have their pointers pushed onto the stack
The child node is traversed using these stacked ray pointers
The pointers are popped off the stack after the traversal returns

Can also use Pentium 4 SSE or G4/G5 Altivec vector operations to test 4
rays at a time against a child node, for a maximum 4x speedup

cpsc/enel P 1 0

Speeding Up Ray Tracing

In the naive algorithm each ray has to
be tested against each object.

O (m*n) m rays and n objects.

Most rays miss most objects.

Exploit this:

1. Bounding volumes or boxes on
hierarchical groups of objects.

2. Space Sub−division.

Bounding Spheres

cpsc/enel P 1 1

Uniform Space Sub−Division

Each ray is checked against each
voxel. In the figure the ray
intersection for object A is
found in voxel v1.

Each ray has a unique number or
signature. This is stored with
the object so that when the ray
is intersected with A in voxel v2
the intersection information is
retrieved and the object
intersection test is not
repeated.

?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????

B

>>>>>>>>>>>>
>>>>>>>>>>>>
>>>>>>>>>>>>
>>>>>>>>>>>>
>>>>>>>>>>>>
>>>>>>>>>>>>
>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>

C

A

C

A

B,C

A,BC
A

V1

V2

cpsc/enel P 1 2

Uniform Space Sub−Division Voxel traversal (Cleary et al)

The Algorithm
dx and dy are the distance from
the x and y axis. px,py,pz have
values of 1 or −1 depending on
direction of ray.

repeat
if dx<=dy {

i:=i+px
dx:=dx+δx

} else {
j:=j+py
dy:=dy+δy

}
Until an intersection is
found in cell i,jdx is the distance between

voxels yz faces

dx and dy record the total
distance along the ray.

δx
δx

δy

δy
i,j i+1,j

i,j+1

cpsc/enel P 1 3

Next Voxel Algorithm

Suppose voxels stored as a 3D array n*n*n

voxel[i,j,k] address p = i*n*n + j*n +k

Multiplications in next voxel loop.

But n*n constant

Each time i is incremented p incemented by + or − n2

Each time j is incremented p incemented by + or − n

n should be large enough such that most cells are empty

use a hash table instead of 3D array of voxels.
p mod M index into table length M
avoid division by checking p against M at the end of each loop

cpsc/enel P 1 4

Termination of Next Voxel Algorithm

Detect when ray leaves bounding volume for
scene. Distances to boundary faces are
given by sx,sy,sz Compare dx,dy,dz to
sx,sy,sz once per loop.

>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>

Bit array one bit per
voxel indicates if any
object overlaps that
voxel. Hash table only
accessed if bit on.

1
1 11

1

111

1

cpsc/enel P 1 5

Voxel Traversal Algorithm in 3D with termination
initialize values of px,py,pz, δx,δy,δz,dx,dy,dz and p

repeat
if (dx<=dy) and (dx<=dz) {

if dx>=sx exit;
p:=p+px
dx:=dx+δx

} else if (dy<=dx) and (dy<=dz) {
if dy>=sy exit;
p:=p+py
dy:=dy+δy

} else if (dz<=dy) and (dz<=dx) {
if dz>=sz exit;
p:=p+pz
dz:=dz+dz

}
if p>M p:=p−M

 until an intersection foundin cell with hash key p

